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Effect of Intrinsic Decoherence on Nonclassical
Effects of the Nondegenerate Bimodal
Multiquanta JCM
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We study the nondegenerate multiguanta Jaynes-Cummings model governed by Milburn
equation. This models the decoherence of a quantum system as it evolves through intrin-
sic mechanisms beyond conventional quantum mechanics governed by tbdiSgar”
equation. We find an exact solution of this equation and apply it to investigate the effects
of the intrinsic decoherence on nonclassical effects of the system, such as collapses and
revivals of the population inversion and squeezing of the radiation field, for the resonant
and the off-resonant cases when the particle (atom or trapped ion) is taken to be prepared
initially in a coherent superposition state.
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1. INTRODUCTION

Because of the recent advances in cooling and trapping of ions (Diedrich
et al, 1989; Monroeet al, 1995) the motion of the center-of-mass (c.m.) of
trapped ions has to be dealt with quantum mechanically. Laser irradiation (Blockley
et al, 1992; Blockley and Walls, 1993; Cirat al,, 1993a,c; de Matos Filho and
Vogel, 1994, 1996a,b; Vogel and de Matos Filho, 1995) is used to control this
motion coherently by coupling the ion’s external and internal degrees of freedom.
Models have been constructed to describe a two-level ion undergoing quantized
vibrational motion within a harmonic trapping potential and interacting with a
classical light field (Blockleyt al., 1992; Blockley and Walls, 1993; Cirat al.,

1992, 19934a,b,c). It has been pointed out that the dynamics of a trapped ion can be
described by a Hamiltonian similar to a Jaynes-Cummings model (JCM) (Jaynes
and Cummings, 1963) or its generalizations under certain regimes (Btzék

1997; de Matos Filho and Vogel, 1994, 1996a; Gbal, 1996; Steinbackt al,
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1997; Vogel and de Matos Filho, 1995). Within the framework of these JCM-like
models, various aspects of the dynamics of trapped ions have been studied. For
example, quantum nondemolition measurement of vibrational quanta of trapped
ions has been analyzed theoretically (de Matos Filho and Vogel, 1996¢) and several
schemes have been proposed (Bardeofil, 1996; D’Helon and Milburn, 1996;
Poyatoset al., 1996; Wallentowitz and Vogel, 1995) for the reconstruction of
guantum—mechanical vibrational states of a trapped ion.

One of these schemes has been successfully applied to the experimental re-
construction of the Wigner function of nonclassical states of the vibrational mode
of a trapped ion (Leibfrieckt al., 1996). It is to be noted that ion trap experi-
ments suffer from decoherence because of classical noise in the laser beams and
trapping potential. Such effect has been seen in recent experimentsdttaho
1997; Meekhofet al., 1996). This kind of decoherence may be described using
the intrinsic decoherence models (Chen and Kuang, 1994; Kuang and Chen, 1994,
1995; Milburn, 1991; Moya-Cess# al, 1993; Obadat al, 1998, 1999).

The intrinsic decoherence approach has been proposed and investigated in the
framework of several models (Caves and Milburn, 1987; Diosi, 1989; &liH.,

1989, 1990; Ghirardkt al., 1986, 1990a,b). In particular, Milburn (Milburn, 1991,
1993) proposed a simple intrinsic decoherence models based on an assumption that
on sufficiently short time steps the system evolves in a stochastic sequence of iden-
tical unitary transformations. This assumption modifies the von Neumann equation
for the density operator of a quantum system through a simple modification of the
usual Schodinger evolution equation. The off-diagonal elements of the density
operator in Milburn’s model are intrinsically suppressed in the energy eigenstate
basis, thereby intrinsic decoherence is realized without the usual dissipation asso-
ciated with the normal decay. The decay is entirely of phase dependence only. Free
evolution of a given quantum system has been discussed early (Milburn, 1991) but
investigations of interacting subsystems followed (Chen and Kuang, 1994; Kuang
and Chen, 1994; Kuargg al., 1995; Moya-Cessat al,, 1993). The latter were con-
cerned with the Jaynes-Cummings model either with one-photon or multiphoton
transitions. The Jaynes-Cummings model (JCM) (Jaynes and Cummings, 1963) in
quantum optics describes many pure quantum phenomena, such as collapses and
revivals of the atomic inversion and oscillations of photon number distribution.

It has been generally accepted that these nonclassical effects originate to form
gquantum coherences between the amplitudes. Therefore, it is an interesting topic
to investigate the effects of the intrinsic decoherence on the nonclassical properties
in the JCM, when we have two modes of the interacting field affecting the inter-
action, and hence nondegenerate bimodal multiguanta JCM (Aledalla 1990,

1991; Buzeket al,, 1997; Gerry and Eberly, 1990; Gou, 1989; Steinbathl.,

1997). Such a model is discussed in this paper when it is governed by the Milburn
equation. On the other hand, there has been increased interest in the problem of de-
coherence in qguantum mechanics because of its possible applications in quantum
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measurement processes and quantum computers (Chuang and Yamamoto, 1997,
Shor, 1995).

Decoherence due to normal decay is often said to be the most efficient effect
in physics, to a point where observation comes too late after the effect has reached
completion (Omne’s, 1997). The effect in action has been observed in quantum
optics where the decoherence phenomena transforming addeei-cat into a
statistical mixture was observed while unfolding (Bruwateal., 1996). It is well
known that JCM in quantum optics (Shore and Knight, 1993) and cavity QED with
cold trappedions (Buzedt al., 1997) can describe many pure quantum phenomena,
called nonclassical effects, such as collapses and revivals of population inversion,
oscillations of number distributions for quanta, and squeezing of the cavity field.

In this paper, we study this problem for the nondegenerate bimodal multi-
guanta JCM (Abdallat al., 1990, 1991; Buzelet al, 1997; Gerry and Eberly,
1990; Gou, 1989; Steinbaetal., 1997) governed by the Milburn model. It will be
shown that the intrinsic decoherence in the particle (atom or trapped ion) field in-
teraction modifies the time evolution of the population inversion of the quanta and
squeezing of the cavity field. This paper is organized as follows. In section 2,
We present the exact solution of the Milburn equation for the nondegenerate
bimodal multiquanta Jaynes-Cummings Hamiltonian and give the explicit expres-
sion of this solution in the two-dimensional basis of the particle. In section 3, We
study the effect of the intrinsic decoherence on population inversion and squeezing
of the radiation field in the JCM either in the resonant or the off-resonant cases
when the particle (atom or trapped ion) is taken to be prepared initially in a coherent
superposition state. Finally some concluding remarks are provided.

2. EXACT SOLUTION OF THE MILBURN EQUATION

In standard quantum mechanics the dynamics of a conservative system is
described by the density operajs(t)'governed by the evolution operatdft) =
exp[—iﬁtl-]], whereH is the Hamiltonian describing the system. The change in
the state of the quantum system in a time intervdl {- t) is given by the unitary
transformation

A+ =0@an0 ) = exp[—iﬁrﬁ} A0 eXp[?ﬁm] "

which is valid for arbitrarily large or small values of Milburn (1991) replaced
the above paradigm with three new postulates:

(1) On a sufficiently small time scale the change in the state of the system is
stochastic. The probability that the state of the system is changéd)is
which reflects quantum jumps in the state of the system.
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(2) Assuming that the state of the system undergoes some changes, then the
density operator changes according to the relation

plt+1)= exp[—%é(r)l—]} A(t) exp[iﬁé(r)l:l} 2)

with 6(t) being some function af. In standard quantum mechanip$r)

takes the value 1 while(z) = . Milburn’s proposed it is only required

thatp(zr) — 1 andd(r) — t for values oft which are sufficiently large.
(3) In Milburn’s model it is postulated that

lim 6(z) = 6 3)

which effectively introduces a minimum time step in the universe (Golden, 1992;
Kadyshevsky, 1978), whose inverse is equal to the mean frequency of the unitary
step,y = 0—10 Invoking the assumption that on a very short time scale the prob-
ability that the system evolves i5(r) = y t, then the rate of change oft) in
Milburn’s model satisfies the following equation:

S o=y {exp[—hi—y H} A exp[hi—y H} —ﬁ(t)}- 4

Obviously, the generalized Eq. (4) alters the $dmger dynamics. It reduces
to the ordinary von Neuman equation for the density operator in the Jimit
+o00. Expanding Eq. (4) to first order in—2, the following dynamical equation is
obtained:

d . [P, 1 -~ L

3P0 =~ (A 21 = SR 1R, 0] (5)
which is the Milburn equation that we shall study below. This equation has been
solved for a harmonic oscillator and a precessing spin system (Milburn, 1991):
the simple JCM (Chen and Kuang, 1994; Kuang and Chen, 1994; Moya-Cessa
et al, 1993), the resonant multiphoton JCM (Kuang and Chen, 1995), and the
nondegenerate two-mode JCM (Obaataal, 1998, 1999). In what follows, we
shall consider the exact solution of this equation for the nondegenerate bimodal
multiguanta JCM with a detuning parameter when the particle (atom or trapped
ion) is taken to be prepared initially in a coherent superposition gtage (Obada
and Abdel-Hafez, 1991; Zaheer and Zubairy, 1989).

The nondegenerate bimodal multiquanta JCM consists of a two-level parti-
cle (atom or trapped ion) and two modes interacting nonlinearly. The interaction
between the particle and the field is affectedkbyjuanta of thath mode. The
Hamiltonian for the system, in the rotating wave approximation (Abdztllal.,

1990, 1991; Buzelet al, 1997; Gerry and Eberly, 1990; Gou, 1989; Steinbach
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et al, 1997), is written as:

A At A At A , ~ ~ ~ N ~ ~ ~
H = wala + a)za;az + ?Ooz + A(aIkla;kzo_ + alilalgzm_)

" ki, . N ko . 1
= w1 |:n1+ El(o‘z-i- |)] + wo? |:n2—|— EZ(O‘Z-F |)] — E(klwl+ kowy) |

A Atky atko A Aky ko &
+Eoz+)\(aik1a;k207+alf |2<20,+) (6)

where the detuning parametaris given by
A = (wo — kKiw1 — kowy). (7)

This Hamiltonian can be generated from a Raman coupling for an effective 3-
level ion in aA-configuration confined with a 2-D harmonic trap as described in
(Steinbactet al.,, 1997).

Anion confined in an electromagnetic trap can be regarded as a particle with
guantized center-of-mass (c.m.) motion moving in a harmonic potential. Classical
laser driving field changes the external states of the ion motion because of exciting
or de-exciting internal atomic states of the trapped ion. After using the adiabatic
elimination procedure, a general form of this Hamiltonian is obtained. If both
the vibrational amplitudes of the ion are much smaller than the laser wavelength,
then the Lamb-Dicke limit can be used. In this limit only the leading term in the
Lamb-Dicke parametey whose square gives the ratio of the single photon recaoil
energy to the energy level spacing in the harmonic oscillator potential. This model
[Eq. (6)] can be obtained in the Lamb-Dicke approximation and in the limit of
suitable trap anisotropy and specific sideband detunings of the laser. In this case,
the &'s describe vibrational modes ands describe the ion internal states. This
Hamiltonian generalizes that of Buzekal.(1997), where one of thés describes
the cavity mode and the other describes the vibrational mode of the ion in cavity
QED of a trapped ion. As the coupling between the vibrational modes and the
external environments is extremely weak, dissipative effects which are inevitable
from cavity damping in the optical regime, can be significantly suppressed for the
ion motion. For simplicity, in this paper we talke= 1 and neglect the constant
energy shift%(kla)l + kow)) 1. Eg. (6) takes the form

|:| = l:|o + |:|| (8)
where

|:|0=w1|:ﬁ1+%(5z+|)i|+a)2|:ﬁ2+%(6z+|)i| (9)
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and

~ A
Hi = 56+ rafales +ahaks,) (10)

where§; @ andh; = éTéj are the annihilation (creation) and number operators
for the jth mode ) is the particle-field coupling constamt; andw, are the field
frequencies for the two modes, is the transition frequency of the particle (atom

or trapped ion)g; is the population inversion operator, and dre the “spin flip”
operators which satisfy the relation],"6_] = 6, and %, 6+] = £26. Now, we
look for the exact solution for the density operait) of Eq. (5) taking into account

the Hamiltonian (6). For convenience, we introduce three auxiliary superoperators
(Chen and Kuang, 1994; Kuang and Chen, 1994; Kigirad, 1995; Moya-Cessa
etal, 1993; Obadat al, 1998, 1999)J, S, andL defined by

. © 9 k .
expni) = Y- o (£) A 0R" a1
k=0 " \V
exp(r)i(t) = exp(i Fir)a(t) exp( i) (12)
expL1)p(t) = exp[—zi ﬁz} 5(t) exp[—zi ﬁz}. (13)
Y Y
From Egs. (11-13) it follows that
3= AR, =—i[A A, Lp=—(R2 )= —(R%+ pRD).
14 2y 2y

(14)

By substituting Eq. (14) into Eq. (5), we can obtain the formal solution of the
Milburn equation (Srinivas and Daries, 1981; Ueda, 1990; Ustdd., 1990) as
follows:

A(t) = exp(t) expSH expLt)5(0) (15)

wherep{0) is the density operator of the initial particle-field system.
We assume that the two modes of the field are prepared initially in coherent
stateqas, @) = |o1) ® |az) defined by

oo o0
o1, 02) = Y QuQnlN, N2l = Y QnQnln)®Inz)  (16)
ng,n2=0 ni,n2=0
whereQp, = e /2 /amnT, i = 1,2 and the particle (atom or trapped ion) is

taken to be prepared initially in a coherent superposition $tats) (Obada and
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Abdel-Hafez, 1991; Zaheer and Zubairy, 1989), so that
5(0) = cog %|051., o) (a1, o2 cosj sing €?]ay, az) (a1, aa '
cos5 sing e™'?|ay, az) (a1, az| SIN? § o, a2) (01, otz
17)

In a 2-D basis for the particle the Hamiltonian (6) can be expressed as a sum of
(Ho), which is diagonal in this basis, an#l (), which is not. It is easy to prove
that (H,) and H,) commute, i.e.

[Ho, Hi]1=0. (18)
Thus the representation now takes the form
T w1(Ay + kp) + wa(fz + k) 0
Ho = [ 0 w1fi1 + woly (19)
. A gk
H =2 [Aﬂj{m s } (20)
a & — %

Similarly, the square of the Hamiltonian (6) can also be expressed as a sum of two
matrices in the form

H°=A+B, [AB=0 (21)
whereA is diagonal in the form

. 52 k k 0
A— O(ng + kg, N2 + k) . (22)
0 ® (nl, n2)
andB is given by
6o | (B) Witk t ko) AEF Wi ny) 23
W(ns, n2)a] el — (&) W(ny, np)
with
W(ny, N2) = w11 + wofi (24)
Tk1 ATk aka Ay! fy! 2
, = = — —~ 5
D (nl n2) a a'Z a2 (nl _ k]_)l (n2 _ kz)' ( )
AN2
f13(n1, ng) = D3(ny, N2) + <§) (26)
and

O2(ny, n2) = W2(ny, np) + A232(ng, ny). (27)
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Taking into account the initial condition (17), we can write down the following
expression

pa(t) = expS) expLt)5(0)
= expiHt) exp(—L B) p1(t) exp(—i ét) expiHt) (28)
2y 2y
where the auxiliary operator, (t) is defined by
A cog 1P (t) (W (t)| cos$ sing €919 () (¥'(t)]
pO=| e (29)
cosf sing e |/ (t)) (W (1) SIin? S0 (1)) (W' (1)
with
[(t) = eXp[—zL@)Z(nl + kg, n2 + k2)i|
Y

x expl—i W(ny + ki, np + ko)t]|aa, @2) (30)

and
~, t - LA
W (1)) = eXp[—g@z(nL nz)] expl[=iW(ny, na)t] e, ). (31)

The powers of the operatd can be written as

éZk _
[2AW (N1 + Ky, N2 + k) (N1 + ki, Nz + ko)) 0
0 [22W(n1, nz)fa(ng, n2)]*
(32)
A [22W(ny e np o)y thyna tk)] 4 gk gke [22W(ng,n)iu(ny, ng)] 2
é2k+1 _ 2 (ng+ky,na+kp) 1 %2 (ng,n2)
[22W(n1, np) (1. n)| 24 4 tha g The _ A [22W(n,np)(ng.ng)) 4
iln.n2) 1% 2 Ai(n.no)
(33)
then we can write the operator exp{7 B] in the form
t
exp|—=—B
p[ 2y ]
v A Y(n1+ke, np+ko,t) akiaks Y(ng,nz,t)
= XM+, N2 4 ke, 1) - 2 ﬁ(;1+|i1,§z+|§2) _a11a22 ﬁ(él,:z)
Y(n1,na,t) 1k 5tk % A Y(ny,np,t
—Heeyalal® X(M, g, 1) + 5 s

(34)
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where
X(ng, n, t) = COSh[EW(nL n2)it(ny, nz)},
’ (35)
Y(ny, np, t) = sinh[%\fv(nl, no)i(na, nz)}.

Similarly, we can write the operator expi[ﬁ.t] in the 2-D basis for the
particle as

expl—i Ht]
A i & Southong o) 8l gl Souned
_ C(ny + Ky, n2+k2,t)—'ﬁm ~13% )
- §ny,np,t) A tkaa Tk o i 4 Sourat
! %al 1az ’ C(ny, m2, t) +1i 2% 81(1?31%2))
(36)
with

C(ny, Ny, t) = cosptii(ng, np)]  and  §(ng, ny, t) = sinfatiz(ng, )], (37)
Then,

exp[—i H,t] exp (_Zt_y é)

» A V(ni+kg,np+ko,t) akiake V(ng,ng,t)

| Rtk n2 ke, 1) — 5 T —81'8" i ny)
- V(ng,na,t) atke stk A A V(ny,na,t)
_ ;}(nll,nzz) a 1a2 2 R(ny, Ny, t) + 7 [4(nll,nzz)

(38)

where
R(n1, na, t) = C(n1, Nz, )X (N, Na, 1) +iS(ng, N2, )Y (Ng, Nz, 1) (39)
V(ny, Nz, t) = C(ny, na, t)¥(N1, N2, t) 41 8(ng, na, t)X(Ng, Nz, 1), (40)

Substituting Egs. (29) and (38) into Eqg. (28), we obtain an explicit expression for
the operatop,(t) as follows:

(41)

5aft) = |:,511(t) ﬁlz(t)}

p21(t)  P2(t)
with

. 0 . o 0 . .
p14(t) = cog E\Ifll(t) +cos7 sinS e 1P Pgy(t)

6 .6 ., - 0 .
+ cos sin > € Wy4(t) + sir? Ex1133(t) (42)
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0 - 6 .0 _.. -
p1o(t) = cog E‘lflz(t) + cos7 sin e P Way(t)
0 0 e 0
+ cos; sinz ¢ Way(t) + sir? E\1134(t) (43)
, 0 0 0 -
po(t) = cod E\Ile(t) +cos; sinz e W (t)
0 0 i, 0
+ cos; sinz ¢ Wos(t) + sir? Ex1143(t) (44)
, 0 o 0 -
pot) = cod E\IJzz(t) + cos; sinz e Wo(t)

+ cos% sin% P, (t) + Sir? %xi/M(t) (45)
where we have used the following symbol
Wi ) = [T &1 (1 =1,2,3,4) (46)
with

Ba(t)) = [ﬁ«nl kot k) — o Ytk N2 e ”} By @)

2xn Ny + kg, ng + k)

- _ _ATklATkz\A/(nl'Fkl- n2+ky,t) | <
|\IJ2(t)) = |: al az ll(nl-i- kl: n, + k) i| |\I’(t)> (48)
- _ AklAkz\A/(nly N2, t) | =
|W3(t)) = |:—a4_ &, m} W (1)) (49)
and
|Wy(t)) = [ﬁ(nl, N, t) + %%] (1)) (50)

where|(t)) and |¥/'(t)) are given by Egs. (30) and (31). Taking into account
the definition of the superoperatd; we can obtain the action of the operator
exp(Jt) on the density operatgn,(t) as follows:

- X1 N\ akl ok

A =2 (=) HAH (51)
k=0 " \V

where the Hamiltoniatd and the operatop,(t) are given by Egs. (6) and (41),

respectively. Equation (51) describes the exact solution of the Milburn equa-

tion [Eq. (5)] for the nondegenerate bimodal multiquanta JCM. Once the density

operator is calculated all relevant statistical quantities can be computed.
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3. EFFECT OF THE INTRINSIC DECOHERENCE ON NONCLASSICAL
EFFECTS OF THE SYSTEM

In this section, we investigate the effect of the intrinsic decoherence on non-
classical effects of the nondegenerate bimodal multiquanta JCM for two cases—
exact resonant and off-resonant—when the particle (atom or trapped ion) is taken
to be prepared initially in a coherent superposition state.

3.1. Population Inversion

Itis well known that in JCM the quantum coherences built up during the in-
teraction between the field and the particle significantly affect the dynamics of the
particle (Abdallaet al, 1990, 1991; Buzekt al, 1992, 1997; Gea-Banacloche,
1991; Gerry and Eberly, 1990; Gou, 1989; Narozletyl, 1981; Phoenix and
Knight, 1988, 1991; Shore and Knight, 1993). The existence of the quantum co-
herences is the reason why one can observe collapses and revivals of the population
inversion of the particle. Now we evaluate the population inversion in the nonde-
generate multiguanta JCM. Using the exact soluti€n), we find that population
inversion is given by

W(t) = (1) = Tr{p(1)é2] = Z 2 u2(ng + kg, np + ko)

Ny, Nx=

[e's) 2 2
[cogﬁ |Qn,1%1Qn,|
0

AN, 22
1\ 2 + v(Ny + K, N2 + ko) exp —TM (N1 + kg, N2 + k)

560 |Qnytk, *1 Qo
x €0S 2tu(Ny + Ky, No + ko) § + sir? = 1t 2tke
/‘L( 1 1, 112 2)} 2M2(nl+kly n2+k2)

AN 222t
x {— (5) —?2(N1 4 kg, Nz + ko) exp[—T,uz(nl + kg, np + kz)}
X COs 2’tl'l’(nl + klv n2 + kZ)} + SineQnrH(l Qn2+k2 Q:1 Q:Z

22t ,

C0oS¢ <1 — exp[—Tu

5 v(n1 4 kg, N2 + ko) (3)
w(ny + kg, N2 + ko) | p(ng + ke, N2 + kp)

x (Ny + kg, Nz + kz)} cos 2tu(ny + kg, no + kz)) —sing sin2itu

222t
x (N + kg, N2 + ko) exp[—7 w?(N1 + ke, no + kz)} ” (52)
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We see that whefi = 0 (the particle initially in excited state) the above equations
coincide with those of Obada al.(1998), and when, = 0, A = 0 coincide with
those of Moya-Cessat al. (1993).

We discuss the general behaviour of the population inversion for the nonde-
generate multiquanta JCM, when the particle (atom or trapped ion) initially starts
in a coherent superposition states.

The numerical results are shown in Figs. 1-6 for various values of the pa-
rameter’, and different values of the detuning paramgger(namely 0,10), and
fixed initial mean numbers of quanta andn,.

In Figs. 1 and 2 we plotted the population inversigit) with (¢ = 0) (the
particle initially in excited state) for three values of the param%yeztemamely 10°,

0.5
(@)

o

10 20 30 40 50

10 20 30 40 50
At

Fig. 1. Time evolution of the population inver-
sion W(t) with @ = 0 (the particle initially in the
excited state) interacting with the coherent state
|1, a2)(n1 = Ny = 25) for various values of the
parameter— (@) Az =105, (b) *2 =105, and

© % 2 _ 1074,
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0.5

Fig. 2. Same as Fig. 1 but with the detuning param-
eter£ = 10.

1075, 10~%) with the fixed initial mean numbers of quania= n, = 25 in the
two cases—exact resonance i%.,: 0 and the off-resonant case.

Figures 3 and 4 are same as Figs. 1 and 2 butévithrr (the particle initially
in ground state).

Figures 5 and 6 are same as Figs. 1 and 2 but #vithZ. In these figures
(see Figs. 5 and 6), we observe rapid deterioration of revivals of the population
inversion than in two casés= 0 andf = 7.

These figures show that with the decrease of the paramgitet, with a more
rapid suppression of quantum coherences, we can observe rapid deterioration of
revivals of the population inversion. Which means that the decay of quantum
coherences is due to the very specific time evolution described by Eq. (5), i.e.,
because of the intrinsic decoherence. The amplitudes of the revivals are suppressed
further by increasing the detuning parameter However as time evolves we
observe thatV(t) settles to a positive value which means energy is stored in the
atomic system.



1410 Hessian

0.5

(a)

(=]

(b)

10 20 30 40 50

10 20 30 40 50
At

Fig. 3. Same as Fig. 1 but with = = (the particle
initially in the ground state).

3.2. Amplitude-Squared Squeezing of the Field

Now, we study the amplitude-squared squeezing of the field of the nonde-
generate bimodal multiguanta JCM governed by the Milburn equation and discuss
effects of the intrinsic decoherence on the squeezing. We define the operators of
the real and imaginary parts of the square of the amplitude (Hillery, 1987a,b)

A 1, . A - 1. A .
Xjn=S[A0+A O] Xp=Z[A0-A'0]. (=12 (3

whereAJ (t) = & goit) AJT(t) = éjfe“wlt, are the slowly varying operators. These
operators satisfy the commutation relation,

[Xj1, Xj2l =i +1), (j=1,2) (54)
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0.5
(a)

10 20 30 40 50

-0.5
10 20 30 40 50
0.5
(c)
0
-
}
-0.5
0 10 20 30 40 50

At

Fig. 4. Same as Fig. 3 but with the detuning param-
eter£ = 10.

which implies the uncertainty relation
N - 1 .
(AXjD)HAX2)* = 21X, Xj2]) 2, (55)

The state of the field is said to be amplitude-squared squeezed whenever one of
the two quadratures satisfies the relation:

(ARj109 < 5@ +1), (j=10r2) (56)

wheren; = éféj, (j = 1, 2).Onthe other hand, the condition (56) can be rewritten
as
; ~ 1
§V = (@X;)? - 3@ +1), (=12]=10r2) (57)

and squeezing occurs whdﬂi) or %j) < 0. In terms of the photon annihilation
and creation operators of the field, we get for the amplitude-squared squeezing
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(=)

(c)
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At

Fig. 5. Time evolution of the population inversion
W(t) with 6 = 7 interacting with the coherent state
|z, a2) (N1 = no :35) for various2 values of the
para{neter%: @ %= 1078, (b) *7 =105, and
©7% = 104,

factorsSY) the expression

S0 = TR 4] + A - (R)+ AT )
§ = TR - &) - A+ (R)- (A7) 60

Now, we can obtain the amplitude-squared squeezing of the first or the second
mode from the last expression if we take= 1 or 2. The field density operator
0r(t) is obtained fromp(t) by tracing over the atomic states,

pr(t) = Trap(t). (60)
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Fig. 6. Same as Fig. 5 but with the detuning param-
eter£ = 10.

From the field density operator, the expectation values in the general form for the
field operatorsl - A% AL * AZ is calculated from the formula

AL A A2 A ~ A1 A ATl2 A
(A AS AL AY) = Tria[pr AL AT AL AY]. (61)
The final result is
AT ASL AT R%2
<A1 Al A2 AZ)
1 & 0
=12 Z |:C052 EQH1+Slan+SzQ;k11+r1 hotr2 {[J(1+ Ds)(1+ Dr)
ny,no=0

t
+ Ji - L] exp(irta_(ng, ny)) eXp(—ngr(nl, nz))

+[J(A+ Ds)(1 — Dr) — - Lg] exp(—irta,(ng, n2))
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x exp(—zt—yc_(nl, nz)) + [I(L= De)(1+ Dy) = 3y - Ld]
 expiata.(m, 1) exp( 5 c.(m.na)) + [3(2.- D)1 - D)
+ J; - L] exp(=iita_(ng, np)) exp(—zt—yb(nl, ng))}

+ sir %Qn1+51+k1Qn2+Sz+k2 Qnitritk Qnatratk {[Jl(l — Ds)(1 - Dr)

+J - L] exp{ata_(ny, ny)) exp(—;—yb+(n1, nz))
+[J(1— Ds)(A+ Dy) — J - L] exp(=irta,(ng, ny))

t

X exp(—ZC_(nl, n2)> 4+ [J(@+ Dg)(1 — Dy) — J - L4]
t
« explta, (n, ny) exp(—gu(nl, nz)) [+ DY + Dy)
+J - L] exp(=ixta_(ng, nz)) e><P<—2Lb—(n1, nz))}
Y
6 .6 —ig * *

+ COSE sin E € Qn1+51+k1 Qn2+52+k2 in+r1 No+ro
x {[J Lo(L+ D) + - Li(1— D] exp(ata(n, )

t
X exp(—gm(nl, n2)> +[J-Ls(1—D;)— Ji- L, (1 - Dg)]

< exp(_izta, (N, ny)) exp(—zic_(nl, n2)>
Y
+[—J-Ls(1+ Dy) + Ji - Ly (1 + Dg)] exp(irtay(ng, n2))

X exp(—zt—yc+(n1, nz)) +[-J - Ls(1—Dy)— - L (14 Dg)]
x exp(—iita_(ng, ny)) exp(—Lb_(nl, n2)>}
2y

6 6
0 o
+ €085 SINZ€¥ Qny+s Qnovs, Qi Qe
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Fig. 7. Time evolution for the amplitude-squared
squeezing paramet%l) of Eq. (58) for6 = 0 (the
particle initially in the excited state) with the initial
mean numbera; = n, = 10, and the detuning pa-
rameterz% = 0 (broken curve) and 5 (fLéI” curve) for
various values of the pgramet@f: (@) A7 =108,
(b) *7 =102, and (c)*7 =101

{19 L@+ DY+ 3L - D] explata (o)
X eXp<_2Lyb+(n1y nz)) +[-J-L(1+ Ds)+ Ji - Ls(1+ Dy)]

< exp(-iAta (ny, n2)) exp(—%c_(nl, nz))

+[J-Lr(1— Ds) — J1- Ls(1 — Dy)] expirta(ng, no))

1415
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Fig. 8. Same as Fig. 7 but with = 7 (the particle
initially in the ground state).

x exp(—zt—yc+(n1, nz)) +[=J-Li(1—Ds) — J-Ls(1+ Dy)]

x exp(=ii ta_(ng, ny)) exp<—2t—yb_(n1, n2)) H (62)

where

J— \/(nl + s)!(Nz2 + $)! (g +r1)!(N2 +12)!
B (np)!(ny)! n)l(n)!

JiisJwithny — ny + kg, np — no + ks (63)

_v(ng 481+ kg, 2 + 5+ Ko)
T+ s kN + 5+ ko)

Ly = Lex L,
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Fig. 9. Time evolution for the amplitude-squared
squeezing parametéél) of Eq. (58) foro = 7%
and the relative phasg = 0 with the initial mean
numbersﬁl = ny = 10 and the detuning parameter
2x =0 (broken curve) and 5 (fuII cugve) for var-
ious values of the parametép @ % = 1075,
(b) % =102 and (©)% = 10,

and
A
(2&) (64)
u(ny+ s+ ki, N2 + 5 + ko)
with
ax(ng, N2) = w(n+ri+ky, no+r2+ ko)
+ pu(n1 + 8.+ Ky, N2 + 2 + ko) (65)
b (N, N2) = {(wi(r1 — S1) + w2(r2 — S) + Aa_(ng, NY))}> (66)

ce(ng, N2) = {(wi(r1 — S1) + wa(r2 — S) + Aa, (Ng, N2))}2. (67)
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Fig. 10. Same as Fig. 9 but with the relative phase
$=3.

Now we proceed to investigate the effect of the intrinsic decoherence on the
amplitude-squared squeezing by using Egs. (62—67), and specifying the exponents
r, s we get the expression for the amplitude-squared squeezing of the first mode
for two-quantalf; = k, = 1).

Numerical results for Eqg. (58) are presented in Figs. 7-12. Here we plot-
ted amplitude-squared squeez'ﬁﬁf [Eq. (58)] againskt for n; = n, = 10 and
different values of the decoherence paraméie(mamely 10°%,10°2,101) and
different values of (namely 0,7, %, andr), and also the relative phaggnamely
0 and?) either in the resonant or in the off-resonant cases.

In Figs. 7 and 8 we display amplitude-squared squeezing [Eq. (58)] with
% = 0 (broken curve) an% = 5 (full curve), with different values of the deco-
herence parametéfr (namely 10°%, 1072, 10°1) for = 0 (the patrticle initially in
excited state) and/ = 7 (the patrticle initially in ground state), respectively. The
first casep = O (the particle initially in the excited state) coincides with that of
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Fig. 11. Time evolution for the amplitude-squared
squeezing parametéél) of Eq. (58) foro =5
and the relative phasg = 0 with the initial mean
numbersﬁl = ny = 10 and the detuning parameter
2x =0 (broken curve) and 5 (fuII cugve) for var-
ious values of the parametép @ % = 1075,
(b) % =102 and (©)% = 10,

Obadeet al. (1999). Also it is apparent from the calculations that for these special
cases, phase does not affect squeezing.

In Figs. 9 and 10 we display the results with ar@le Z and for the values
of relative phase (namely O arig), respectively W|th— = 0 (broken curve) and
2— = 5 (full curve) for different values of the decoherence paran%te&namely
106,102, 10%).

From Figs. 9 and 10 it is clear that in the absence of the phase the
squeezing does not appear in the off- resonant%aseS (full curve) (see Fig. 9),
and in the resonant ca%e 0 (broken curve) it appears just whéﬂ 106
(see Fig. 9 (a)), while in presence of the phase the squeezing appears in two cases
& =0and% =5 (see Fig. 10).
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Fig. 12. Same as Fig. 11 but with the relative phase
$=13.

Figures 11 and 12 are same as figures 9 and 16, buf. We see from these
figures no squeezing occurs in two cases—resonant and off-resonarmg—=for
(see Fig. 11), and whep = 7 it occurs (see Fig. 12), but the squeezing in these
cases (Fig. 12) is less than those in Fig. 10.

In view of these Figs. 7-12, we observe that the amount of squeezing rapidly
decrease with the decrease of the decoherence pargmétaus we conclude that
the effect of the intrinsic decoherence on the squeezing of the field is to suppress
the squeezing of the field in the nondegenerate multiquanta JCM.

4. CONCLUDING REMARKS

In this paper, we have considered an effective Hamiltonian (6) describing the
interaction between a two-level particle (atom or trapped ion) and a two-mode field
through multiguanta. The appearance of this Hamiltonian in trapped ion experi-
ments in the Lamb-Dicke regime and with suitable side-band detunings has been



Nondegenerate Bimodal Multiguanta JCM 1421

mentioned. We have found the exact solution of the Milburn equation [EqQ. (5)]
for the nondegenerate multiquanta JCM. Using the exact solution [Eq. (51)], we
have discussed the effect of the intrinsic decoherence on population inversion
and squeezing of the radiation field. It is shown that the intrinsic decoherence
in the particle-field interaction suppress the nonclassical effects, where with the
decrease of the parameter i.e. with a more rapid decohering, we observed a
rapid decrease of the amount of squeezing. The detuned model is more suscep-
tible to decoherence. It is also to be remarked that the phenomena depending on
the number operators (such as mean values of number of quanta and population
inversion) show more rapid decoherence than those dependingy@dror their
powers.
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