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We study the nondegenerate multiquanta Jaynes-Cummings model governed by Milburn
equation. This models the decoherence of a quantum system as it evolves through intrin-
sic mechanisms beyond conventional quantum mechanics governed by the Schr¨odinger
equation. We find an exact solution of this equation and apply it to investigate the effects
of the intrinsic decoherence on nonclassical effects of the system, such as collapses and
revivals of the population inversion and squeezing of the radiation field, for the resonant
and the off-resonant cases when the particle (atom or trapped ion) is taken to be prepared
initially in a coherent superposition state.
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1. INTRODUCTION

Because of the recent advances in cooling and trapping of ions (Diedrich
et al., 1989; Monroeet al., 1995) the motion of the center-of-mass (c.m.) of
trapped ions has to be dealt with quantum mechanically. Laser irradiation (Blockley
et al., 1992; Blockley and Walls, 1993; Ciracet al., 1993a,c; de Matos Filho and
Vogel, 1994, 1996a,b; Vogel and de Matos Filho, 1995) is used to control this
motion coherently by coupling the ion’s external and internal degrees of freedom.
Models have been constructed to describe a two-level ion undergoing quantized
vibrational motion within a harmonic trapping potential and interacting with a
classical light field (Blockleyet al., 1992; Blockley and Walls, 1993; Ciracet al.,
1992, 1993a,b,c). It has been pointed out that the dynamics of a trapped ion can be
described by a Hamiltonian similar to a Jaynes-Cummings model (JCM) (Jaynes
and Cummings, 1963) or its generalizations under certain regimes (Buzeket al.,
1997; de Matos Filho and Vogel, 1994, 1996a; Gouet al., 1996; Steinbachet al.,
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1997; Vogel and de Matos Filho, 1995). Within the framework of these JCM-like
models, various aspects of the dynamics of trapped ions have been studied. For
example, quantum nondemolition measurement of vibrational quanta of trapped
ions has been analyzed theoretically (de Matos Filho and Vogel, 1996c) and several
schemes have been proposed (Bardroffet al., 1996; D’Helon and Milburn, 1996;
Poyatoset al., 1996; Wallentowitz and Vogel, 1995) for the reconstruction of
quantum–mechanical vibrational states of a trapped ion.

One of these schemes has been successfully applied to the experimental re-
construction of the Wigner function of nonclassical states of the vibrational mode
of a trapped ion (Leibfriedet al., 1996). It is to be noted that ion trap experi-
ments suffer from decoherence because of classical noise in the laser beams and
trapping potential. Such effect has been seen in recent experiments (Itanoet al.,
1997; Meekhofet al., 1996). This kind of decoherence may be described using
the intrinsic decoherence models (Chen and Kuang, 1994; Kuang and Chen, 1994,
1995; Milburn, 1991; Moya-Cessaet al., 1993; Obadaet al., 1998, 1999).

The intrinsic decoherence approach has been proposed and investigated in the
framework of several models (Caves and Milburn, 1987; Diosi, 1989; Elliset al.,
1989, 1990; Ghirardiet al., 1986, 1990a,b). In particular, Milburn (Milburn, 1991,
1993) proposed a simple intrinsic decoherence models based on an assumption that
on sufficiently short time steps the system evolves in a stochastic sequence of iden-
tical unitary transformations. This assumption modifies the von Neumann equation
for the density operator of a quantum system through a simple modification of the
usual Schr¨odinger evolution equation. The off-diagonal elements of the density
operator in Milburn’s model are intrinsically suppressed in the energy eigenstate
basis, thereby intrinsic decoherence is realized without the usual dissipation asso-
ciated with the normal decay. The decay is entirely of phase dependence only. Free
evolution of a given quantum system has been discussed early (Milburn, 1991) but
investigations of interacting subsystems followed (Chen and Kuang, 1994; Kuang
and Chen, 1994; Kuanget al., 1995; Moya-Cessaet al., 1993). The latter were con-
cerned with the Jaynes-Cummings model either with one-photon or multiphoton
transitions. The Jaynes-Cummings model (JCM) (Jaynes and Cummings, 1963) in
quantum optics describes many pure quantum phenomena, such as collapses and
revivals of the atomic inversion and oscillations of photon number distribution.
It has been generally accepted that these nonclassical effects originate to form
quantum coherences between the amplitudes. Therefore, it is an interesting topic
to investigate the effects of the intrinsic decoherence on the nonclassical properties
in the JCM, when we have two modes of the interacting field affecting the inter-
action, and hence nondegenerate bimodal multiquanta JCM (Abdallaet al., 1990,
1991; Buzeket al., 1997; Gerry and Eberly, 1990; Gou, 1989; Steinbachet al.,
1997). Such a model is discussed in this paper when it is governed by the Milburn
equation. On the other hand, there has been increased interest in the problem of de-
coherence in quantum mechanics because of its possible applications in quantum
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measurement processes and quantum computers (Chuang and Yamamoto, 1997;
Shor, 1995).

Decoherence due to normal decay is often said to be the most efficient effect
in physics, to a point where observation comes too late after the effect has reached
completion (Omne’s, 1997). The effect in action has been observed in quantum
optics where the decoherence phenomena transforming a Schr¨odinger-cat into a
statistical mixture was observed while unfolding (Bruneet al., 1996). It is well
known that JCM in quantum optics (Shore and Knight, 1993) and cavity QED with
cold trapped ions (Buzeket al., 1997) can describe many pure quantum phenomena,
called nonclassical effects, such as collapses and revivals of population inversion,
oscillations of number distributions for quanta, and squeezing of the cavity field.

In this paper, we study this problem for the nondegenerate bimodal multi-
quanta JCM (Abdallaet al., 1990, 1991; Buzeket al., 1997; Gerry and Eberly,
1990; Gou, 1989; Steinbachet al., 1997) governed by the Milburn model. It will be
shown that the intrinsic decoherence in the particle (atom or trapped ion) field in-
teraction modifies the time evolution of the population inversion of the quanta and
squeezing of the cavity field. This paper is organized as follows. In section 2,
We present the exact solution of the Milburn equation for the nondegenerate
bimodal multiquanta Jaynes-Cummings Hamiltonian and give the explicit expres-
sion of this solution in the two-dimensional basis of the particle. In section 3, We
study the effect of the intrinsic decoherence on population inversion and squeezing
of the radiation field in the JCM either in the resonant or the off-resonant cases
when the particle (atom or trapped ion) is taken to be prepared initially in a coherent
superposition state. Finally some concluding remarks are provided.

2. EXACT SOLUTION OF THE MILBURN EQUATION

In standard quantum mechanics the dynamics of a conservative system is
described by the density operator ˆρ(t) governed by the evolution operatorÛ (t) =
exp[− i

h t Ĥ ], where Ĥ is the Hamiltonian describing the system. The change in
the state of the quantum system in a time interval (t, t + τ ) is given by the unitary
transformation

ρ̂(t + τ ) = Û (τ )ρ̂(t)Û
†
(τ ) = exp

[
− i

h
τ Ĥ

]
ρ̂(t) exp

[
i

h
τ Ĥ

]
(1)

which is valid for arbitrarily large or small values ofτ . Milburn (1991) replaced
the above paradigm with three new postulates:

(1) On a sufficiently small time scale the change in the state of the system is
stochastic. The probability that the state of the system is changed isp(τ ),
which reflects quantum jumps in the state of the system.
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(2) Assuming that the state of the system undergoes some changes, then the
density operator changes according to the relation

ρ̂(t + τ ) = exp

[
− i

h
θ̂ (τ )Ĥ

]
ρ̂(t) exp

[
i

h
θ̂ (τ )Ĥ

]
(2)

with θ (τ ) being some function ofτ . In standard quantum mechanics,p(τ )
takes the value 1 whileθ (τ ) = τ . Milburn’s proposed it is only required
that p(τ )→ 1 andθ (τ )→ τ for values ofτ which are sufficiently large.

(3) In Milburn’s model it is postulated that

lim
τ→0

θ (τ ) = θo (3)

which effectively introduces a minimum time step in the universe (Golden, 1992;
Kadyshevsky, 1978), whose inverse is equal to the mean frequency of the unitary
step,γ = 1

θo
. Invoking the assumption that on a very short time scale the prob-

ability that the system evolves isp(τ ) = γ τ , then the rate of change of ˆρ(t) in
Milburn’s model satisfies the following equation:

d

dt
ρ̂(t) = γ

{
exp

[
− i

hγ
Ĥ

]
ρ̂(t) exp

[
i

hγ
Ĥ

]
− ρ̂(t)

}
. (4)

Obviously, the generalized Eq. (4) alters the Schr¨odinger dynamics. It reduces
to the ordinary von Neuman equation for the density operator in the limitγ →
+∞. Expanding Eq. (4) to first order inγ−1, the following dynamical equation is
obtained:

d

dt
ρ̂(t) = − i

h
[ Ĥ , ρ̂] − 1

2h2γ
[ Ĥ , [Ĥ , ρ̂]] (5)

which is the Milburn equation that we shall study below. This equation has been
solved for a harmonic oscillator and a precessing spin system (Milburn, 1991):
the simple JCM (Chen and Kuang, 1994; Kuang and Chen, 1994; Moya-Cessa
et al., 1993), the resonant multiphoton JCM (Kuang and Chen, 1995), and the
nondegenerate two-mode JCM (Obadaet al., 1998, 1999). In what follows, we
shall consider the exact solution of this equation for the nondegenerate bimodal
multiquanta JCM with a detuning parameter when the particle (atom or trapped
ion) is taken to be prepared initially in a coherent superposition state|θ , φ〉 (Obada
and Abdel-Hafez, 1991; Zaheer and Zubairy, 1989).

The nondegenerate bimodal multiquanta JCM consists of a two-level parti-
cle (atom or trapped ion) and two modes interacting nonlinearly. The interaction
between the particle and the field is affected byki quanta of thei th mode. The
Hamiltonian for the system, in the rotating wave approximation (Abdallaet al.,
1990, 1991; Buzeket al., 1997; Gerry and Eberly, 1990; Gou, 1989; Steinbach
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et al., 1997), is written as:

Ĥ = ω1â†1â1+ ω2â†2â2+ ωo

2
σ̂z+ λ

(
â†k1

1 â†k2
2 σ̂− + âk1

1 âk2
2 σ̂+

)
= ω1

[
n̂1+ k1

2
(σ̂z+ I )

]
+ ω2

[
n̂2+ k2

2
(σ̂z+ I )

]
− 1

2
(k1ω1+ k2ω2)I

+ 1
2
σ̂z+ λ

(
â†k1

1 â†k2
2 σ̂− + âk1

1 âk2
2 σ̂+

)
(6)

where the detuning parameter1 is given by

1 = (ωo − k1ω1− k2ω2). (7)

This Hamiltonian can be generated from a Raman coupling for an effective 3-
level ion in a3-configuration confined with a 2-D harmonic trap as described in
(Steinbachet al., 1997).

An ion confined in an electromagnetic trap can be regarded as a particle with
quantized center-of-mass (c.m.) motion moving in a harmonic potential. Classical
laser driving field changes the external states of the ion motion because of exciting
or de-exciting internal atomic states of the trapped ion. After using the adiabatic
elimination procedure, a general form of this Hamiltonian is obtained. If both
the vibrational amplitudes of the ion are much smaller than the laser wavelength,
then the Lamb-Dicke limit can be used. In this limit only the leading term in the
Lamb-Dicke parameterη whose square gives the ratio of the single photon recoil
energy to the energy level spacing in the harmonic oscillator potential. This model
[Eq. (6)] can be obtained in the Lamb-Dicke approximation and in the limit of
suitable trap anisotropy and specific sideband detunings of the laser. In this case,
the â’s describe vibrational modes and ˆσ ’s describe the ion internal states. This
Hamiltonian generalizes that of Buzeket al.(1997), where one of thêa’s describes
the cavity mode and the other describes the vibrational mode of the ion in cavity
QED of a trapped ion. As the coupling between the vibrational modes and the
external environments is extremely weak, dissipative effects which are inevitable
from cavity damping in the optical regime, can be significantly suppressed for the
ion motion. For simplicity, in this paper we takeh = 1 and neglect the constant
energy shift12(k1ω1+ k2ω2)I . Eq. (6) takes the form

Ĥ = Ĥo + Ĥ I (8)

where

Ĥo = ω1

[
n̂1+ k1

2
(σ̂z+ I )

]
+ ω2

[
n̂2+ k2

2
(σ̂z+ I )

]
(9)
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and

Ĥ I = 1

2
σ̂z+ λ

(
â†k1

1 â†k2
2 σ̂− + âk1

1 âk2
2 σ̂+

)
(10)

whereâj (â
†
j ) andn̂ j = â†j â j are the annihilation (creation) and number operators

for the j th mode,λ is the particle-field coupling constant,ω1 andω2 are the field
frequencies for the two modes,ωo is the transition frequency of the particle (atom
or trapped ion), ˆσz is the population inversion operator, and ˆσ± are the “spin flip”
operators which satisfy the relation [ ˆσ+, σ̂−] = σ̂z and [σ̂z, σ̂±] = ±2σ̂±. Now, we
look for the exact solution for the density operator ˆρ(t) of Eq. (5) taking into account
the Hamiltonian (6). For convenience, we introduce three auxiliary superoperators
(Chen and Kuang, 1994; Kuang and Chen, 1994; Kuanget al., 1995; Moya-Cessa
et al., 1993; Obadaet al., 1998, 1999)Ĵ, Ŝ, andL̂ defined by

exp(Ĵτ )ρ̂(t) =
∞∑

k=0

1

k!

(
τ

γ

)k

Ĥ
k
ρ̂(t)Ĥ

k
(11)

exp(Ŝτ )ρ̂(t) = exp(−i Ĥτ )ρ̂(t) exp(i Ĥτ ) (12)

exp(L̂τ )ρ̂(t) = exp

[
− τ

2γ
Ĥ

2
]
ρ̂(t) exp

[
− τ

2γ
Ĥ

2
]
. (13)

From Eqs. (11–13) it follows that

Ĵρ̂ = 1

γ
Ĥ ρ̂ Ĥ , Ŝρ̂ = −i [ Ĥ , ρ̂], L̂ρ̂ = − 1

2γ
{Ĥ2

, ρ̂} = − 1

2γ
(Ĥ

2
ρ̂ + ρ̂ Ĥ

2
).

(14)

By substituting Eq. (14) into Eq. (5), we can obtain the formal solution of the
Milburn equation (Srinivas and Daries, 1981; Ueda, 1990; Uedaet al., 1990) as
follows:

ρ̂(t) = exp(Ĵ t) exp(Ŝt) exp(L̂t)ρ̂(0) (15)

where ˆρ(0) is the density operator of the initial particle-field system.
We assume that the two modes of the field are prepared initially in coherent

states|α1, α2〉 = |α1〉 ⊗ |α2〉 defined by

|α1, α2〉 =
∞∑

n1,n2=0

Qn1 Qn2|n1, n2〉 =
∞∑

n1,n2=0

Qn1 Qn2|n1〉 ⊗ |n2〉 (16)

whereQni = e−n̄i /2
√

n̄i
ni /ni !, i = 1, 2 and the particle (atom or trapped ion) is

taken to be prepared initially in a coherent superposition state|θ , φ〉 (Obada and
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Abdel-Hafez, 1991; Zaheer and Zubairy, 1989), so that

ρ̂(0)=
[

cos2 θ
2 |α1, α2〉〈α1, α2| cosθ2 sin θ

2 eiφ|α1, α2〉〈α1, α2|
cosθ2 sin θ

2 e−iφ|α1, α2〉〈α1, α2| sin2 θ
2 |α1, α2〉〈α1, α2|

]
.

(17)

In a 2-D basis for the particle the Hamiltonian (6) can be expressed as a sum of
(Ĥo), which is diagonal in this basis, and (Ĥ I ), which is not. It is easy to prove
that (Ĥo) and (Ĥ I ) commute, i.e.

[ Ĥo, Ĥ I ] = 0. (18)

Thus the representation now takes the form

Ĥo =
[
ω1(n̂1+ k1)+ ω2(n̂2+ k2) 0

0 ω1n̂1+ ω2n̂2

]
(19)

Ĥ I = λ
[

1
2λ âk1

1 âk2
2

â†k1
1 â†k2

2 − 1
2λ

]
. (20)

Similarly, the square of the Hamiltonian (6) can also be expressed as a sum of two
matrices in the form

Ĥ
2 = Â+ B̂, [ Â, B̂] = 0 (21)

whereÂ is diagonal in the form

Â =
[
2̂2(n1+ k1, n2+ k2) 0

0 2̂2(n1, n2)

]
(22)

and B̂ is given by

B̂ = 2λ

[(
1
2λ

)
Ŵ(n1+ k1, n2+ k2) âk1

1 âk2
2 Ŵ(n1, n2)

Ŵ(n1, n2)â†k1
1 â†k2

2 − ( 12λ) Ŵ(n1, n2)

]
(23)

with

Ŵ(n1, n2) = ω1n̂1+ ω2n̂2 (24)

ν̂2(n1, n2) = â†k1
1 âk1

1 â†k2
2 âk2

2 =
n̂1!

(n̂1− k1)!

n̂2!

(n̂2− k2)!
(25)

µ̂2(n1, n2) = ν̂2(n1, n2)+
(
1

2λ

)2

(26)

and

2̂2(n1, n2) = Ŵ2(n1, n2)+ λ2µ̂2(n1, n2). (27)
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Taking into account the initial condition (17), we can write down the following
expression

ρ̂2(t) = exp(Ŝt) exp(L̂t)ρ̂(0)

= exp(−i Ĥ I t) exp

(
− t

2γ
B̂

)
ρ̂1(t) exp

(
− 1

2γ
B̂t

)
exp(i Ĥ I t) (28)

where the auxiliary operator ˆρ1(t) is defined by

ρ̂1(t) =
[

cos2 θ
2 |9̂(t)〉〈9̂(t)| cosθ2 sin θ

2 eiφ|9̂(t)〉〈9̂ ′ (t)|
cosθ2 sin θ

2 e−iφ|9̂ ′ (t)〉〈9̂(t)| sin2 θ
2 |9̂

′
(t)〉〈9̂ ′ (t)|

]
(29)

with

|9̂(t)〉 = exp

[
− t

2γ
2̂2(n1+ k1, n2+ k2)

]
× exp[−i Ŵ(n1+ k1, n2+ k2)t ]|α1, α2〉 (30)

and

|9̂ ′ (t)〉 = exp

[
− t

2γ
2̂2(n1, n2)

]
exp[−i Ŵ(n1, n2)t ]|α1, α2〉. (31)

The powers of the operator̂B can be written as

B̂
2k =[

[2λŴ(n1+ k1, n2+ k2)µ̂(n1+ k1, n2+ k2)]2k 0

0 [2λŴ(n1, n2)µ̂(n1, n2)]2k

]
(32)

B̂
2k+1 =

 1
2λ

[2λŴ(n1+k1,n2+k2)µ̂(n1+k1,n2+k2)]2k+1

µ̂(n1+k1,n2+k2) âk1
1 âk2

2
[2λŴ(n1,n2)µ̂(n1,n2)]2k+1

µ̂(n1,n2)

[2λŴ(n1,n2)µ̂(n1,n2)]2k+1

µ̂(n1,n2) â†k1
1 â†k2

2 − 1
2λ

[2λŴ(n1,n2)µ̂(n1,n2)]2k+1

µ̂(n1,n2)


(33)

then we can write the operator exp[− t
2γ B̂] in the form

exp

[
− t

2γ
B̂

]

=
 X̂(n1+ k1, n2+ k2, t)− 1

2λ
Ŷ(n1+k1,n2+k2,t)
µ̂(n1+k1,n2+k2) −âk1

1 âk2
2

Ŷ(n1,n2,t)
µ̂(n1,n2)

− Ŷ(n1,n2,t)
µ̂(n1,n2) â†k1

1 â†k2
2 X̂(n1, n2, t)+ 1

2λ
Ŷ(n1,n2,t)
µ̂(n1,n2)


(34)
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where

X̂(n1, n2, t) = cosh

[
λt

γ
Ŵ(n1, n2)µ̂(n1, n2)

]
,

(35)

Ŷ(n1, n2, t) = sinh

[
λt

γ
Ŵ(n1, n2)µ̂(n1, n2)

]
.

Similarly, we can write the operator exp[−i Ĥ I t ] in the 2-D basis for the
particle as

exp[−i Ĥ I t ]

=
 Ĉ(n1+ k1, n2+ k2, t)− i 12λ

Ŝ(n1+k1,n2+k2,t)
µ̂(n1+k1,n2+k2) −i âk1

1 âk2
2

Ŝ(n1,n2,t)
µ̂(n1,n2)

i Ŝ(n1,n2,t)
µ̂(n1,n2) â†k1

1 â†k2
2 Ĉ(n1, n2, t)+ i 12λ

Ŝ(n1,n2,t)
µ̂(n1,n2)


(36)

with

Ĉ(n1, n2, t) = cos[λtµ̂(n1, n2)] and Ŝ(n1, n2, t) = sin[λtµ̂(n1, n2)]. (37)

Then,

exp[−i Ĥ I t ] exp

(
− t

2γ
B̂

)

=
 R̂(n1+ k1, n2+ k2, t)− 1

2λ
V̂(n1+k1,n2+k2,t)
µ̂(n1+k1,n2+k) −âk1

1 âk2
2

V̂(n1,n2,t)
µ̂(n1,n2)

− V̂(n1,n2,t)
µ̂(n1,n2) â†k1

1 â†k2
2 R̂(n1, n2, t)+ 1

2λ
V̂(n1,n2,t)
µ̂(n1,n2)


(38)

where

R̂(n1, n2, t) = Ĉ(n1, n2, t)X̂(n1, n2, t)+ i Ŝ(n1, n2, t)Ŷ(n1, n2, t) (39)

V̂(n1, n2, t) = Ĉ(n1, n2, t)Ŷ(n1, n2, t)+ i Ŝ(n1, n2, t)X̂(n1, n2, t). (40)

Substituting Eqs. (29) and (38) into Eq. (28), we obtain an explicit expression for
the operator ˆρ2(t) as follows:

ρ̂2(t) =
[
ρ̂11(t) ρ̂12(t)

ρ̂21(t) ρ̂22(t)

]
(41)

with

ρ̂11(t) = cos2
θ

2
9̂11(t)+ cos

θ

2
sin

θ

2
e−iφ9̂31(t)

+ cos
θ

2
sin

θ

2
eiφ9̂13(t)+ sin2 θ

2
9̂33(t) (42)
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ρ̂12(t) = cos2
θ

2
9̂12(t)+ cos

θ

2
sin

θ

2
e−iφ9̂32(t)

+ cos
θ

2
sin

θ

2
eiφ9̂14(t)+ sin2 θ

2
9̂34(t) (43)

ρ̂21(t) = cos2
θ

2
9̂21(t)+ cos

θ

2
sin

θ

2
e−iφ9̂41(t)

+ cos
θ

2
sin

θ

2
eiφ9̂23(t)+ sin2 θ

2
9̂43(t) (44)

ρ̂22(t) = cos2
θ

2
9̂22(t)+ cos

θ

2
sin

θ

2
e−iφ9̂42(t)

+ cos
θ

2
sin

θ

2
eiφ9̂24(t)+ sin2 θ

2
9̂44(t) (45)

where we have used the following symbol

9̂i j (t) = |9̂i (t)〉〈9̂ j (t)| (i , j = 1, 2, 3, 4) (46)

with

|9̂1(t)〉 =
[

R̂(n1+ k1, n2+ k2, t)− 1

2λ

V̂(n1+ k1, n2+ k2, t)

µ̂(n1+ k1, n2+ k)

]
|9̂(t)〉 (47)

|9̂2(t)〉 =
[
−â†k1

1 â†k2
2

V̂(n1+ k1, n2+ k2, t)

µ̂(n1+ k1, n2+ k)

]
|9̂(t)〉 (48)

|9̂3(t)〉 =
[
−âk1

1 âk2
2

V̂(n1, n2, t)

µ̂(n1, n2)

]
|9̂ ′ (t)〉 (49)

and

|9̂4(t)〉 =
[

R̂(n1, n2, t)+ 1

2λ

V̂(n1, n2, t)

µ̂(n1, n2)

]
|9̂ ′ (t)〉 (50)

where|9̂(t)〉 and |9̂ ′ (t)〉 are given by Eqs. (30) and (31). Taking into account
the definition of the superoperator̂J, we can obtain the action of the operator
exp(Ĵ t) on the density operator ˆρ2(t) as follows:

ρ̂(t) =
∞∑

k=0

1

k!

(
t

γ

)k

Ĥ
k
ρ̂2(t)Ĥ

k
(51)

where the HamiltonianĤ and the operator ˆρ2(t) are given by Eqs. (6) and (41),
respectively. Equation (51) describes the exact solution of the Milburn equa-
tion [Eq. (5)] for the nondegenerate bimodal multiquanta JCM. Once the density
operator is calculated all relevant statistical quantities can be computed.
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3. EFFECT OF THE INTRINSIC DECOHERENCE ON NONCLASSICAL
EFFECTS OF THE SYSTEM

In this section, we investigate the effect of the intrinsic decoherence on non-
classical effects of the nondegenerate bimodal multiquanta JCM for two cases—
exact resonant and off-resonant—when the particle (atom or trapped ion) is taken
to be prepared initially in a coherent superposition state.

3.1. Population Inversion

It is well known that in JCM the quantum coherences built up during the in-
teraction between the field and the particle significantly affect the dynamics of the
particle (Abdallaet al., 1990, 1991; Buzeket al., 1992, 1997; Gea-Banacloche,
1991; Gerry and Eberly, 1990; Gou, 1989; Narozhnyet al., 1981; Phoenix and
Knight, 1988, 1991; Shore and Knight, 1993). The existence of the quantum co-
herences is the reason why one can observe collapses and revivals of the population
inversion of the particle. Now we evaluate the population inversion in the nonde-
generate multiquanta JCM. Using the exact solution ˆρ(t), we find that population
inversion is given by

W(t) = 〈σ̂z(t)〉 = Tr[ρ̂(t)σ̂z] =
∞∑

n1,n2=0

[
cos2

θ

2

|Qn1|2|Qn2|2
µ2(n1+ k1, n2+ k2)

×
{(

1

2λ

)2

+ ν2(n1+ k1, n2+ k2) exp

[
−2λ2t

γ
µ2(n1+ k1, n2+ k2)

]

× cos 2λtµ(n1+ k1, n2+ k2)

}
+ sin2 θ

2

|Qn1+k1|2|Qn2+k2|2
µ2(n1+ k1, n2+ k2)

×
{
−
(
1

2λ

)2

− ν2(n1+ k1, n2+ k2) exp

[
−2λ2t

γ
µ2(n1+ k1, n2+ k2)

]

× cos 2λtµ(n1+ k1, n2+ k2)

}
+ sinθQn1+k1 Qn2+k2 Q∗n1

Q∗n2

× ν(n1+ k1, n2+ k2)

µ(n1+ k1, n2+ k2)

{ (
1
2λ

)
µ(n1+ k1, n2+ k2)

cosφ

(
1− exp

[
−2λ2t

γ
µ2

× (n1+ k1, n2+ k2)

]
cos 2λtµ(n1+ k1, n2+ k2)

)
− sinφ sin 2λtµ

× (n1+ k1, n2+ k2) exp

[
−2λ2t

γ
µ2(n1+ k1, n2+ k2)

]}]
. (52)
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We see that whenθ = 0 (the particle initially in excited state) the above equations
coincide with those of Obadaet al.(1998), and whenn2 = 0,1 = 0 coincide with
those of Moya-Cessaet al. (1993).

We discuss the general behaviour of the population inversion for the nonde-
generate multiquanta JCM, when the particle (atom or trapped ion) initially starts
in a coherent superposition states.

The numerical results are shown in Figs. 1–6 for various values of the pa-
rameterλ

2

γ
, and different values of the detuning parameter1

2λ , (namely 0,10), and
fixed initial mean numbers of quantān1 andn̄2.

In Figs. 1 and 2 we plotted the population inversionW(t) with (θ = 0) (the
particle initially in excited state) for three values of the parameterλ2

γ
(namely 10−6,

Fig. 1. Time evolution of the population inver-
sion W(t) with θ = 0 (the particle initially in the
excited state) interacting with the coherent state
|α1, α2〉(n̄1 = n̄2 = 25) for various values of the
parameterλ

2

γ
: (a) λ2

γ
= 10−6, (b) λ2

γ
= 10−5, and

(c) λ
2

γ
= 10−4.
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Fig. 2. Same as Fig. 1 but with the detuning param-
eter 12λ = 10.

10−5, 10−4) with the fixed initial mean numbers of quantān1 = n̄2 = 25 in the
two cases—exact resonance i.e.,1

2λ = 0 and the off-resonant case.
Figures 3 and 4 are same as Figs. 1 and 2 but withθ = π (the particle initially

in ground state).
Figures 5 and 6 are same as Figs. 1 and 2 but withθ = π

2 . In these figures
(see Figs. 5 and 6), we observe rapid deterioration of revivals of the population
inversion than in two casesθ = 0 andθ = π .

These figures show that with the decrease of the parameterγ , i.e., with a more
rapid suppression of quantum coherences, we can observe rapid deterioration of
revivals of the population inversion. Which means that the decay of quantum
coherences is due to the very specific time evolution described by Eq. (5), i.e.,
because of the intrinsic decoherence. The amplitudes of the revivals are suppressed
further by increasing the detuning parameter1. However as time evolves we
observe thatW(t) settles to a positive value which means energy is stored in the
atomic system.
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Fig. 3. Same as Fig. 1 but withθ = π (the particle
initially in the ground state).

3.2. Amplitude-Squared Squeezing of the Field

Now, we study the amplitude-squared squeezing of the field of the nonde-
generate bimodal multiquanta JCM governed by the Milburn equation and discuss
effects of the intrinsic decoherence on the squeezing. We define the operators of
the real and imaginary parts of the square of the amplitude (Hillery, 1987a,b)

X̂ j 1 = 1

2

[
Â

2
j (t)+ Â

†2
j (t)

]
, X̂ j 2 = 1

2i

[
Â

2
j (t)− Â

†2
j (t)

]
, ( j = 1, 2) (53)

whereÂ j (t) = âj eiω j t , Â
†
j (t) = â†j e

−iω j t , are the slowly varying operators. These
operators satisfy the commutation relation,

[ X̂ j 1, X̂ j 2] = i (2n̂ j + 1), ( j = 1, 2) (54)
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Fig. 4. Same as Fig. 3 but with the detuning param-
eter 12λ = 10.

which implies the uncertainty relation

(1X̂ j 1)2(1X̂ j 2)2 ≥ 1

4
|〈[ X̂ j 1, X̂ j 2]〉|2. (55)

The state of the field is said to be amplitude-squared squeezed whenever one of
the two quadratures satisfies the relation:

(1X̂ j 1 or 2) <
1

2
(2n̂ j + 1), ( j = 1 or 2) (56)

wheren̂ j = â†j â j , ( j = 1, 2). On the other hand, the condition (56) can be rewritten
as

S( j )
i = (1X̂ j i )

2− 1

2
(〈2n̂ j + 1〉), (i = 1, 2, j = 1 or 2) (57)

and squeezing occurs whenS( j )
1 or S( j )

2 < 0. In terms of the photon annihilation
and creation operators of the field, we get for the amplitude-squared squeezing
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Fig. 5. Time evolution of the population inversion
W(t) with θ = π

2 interacting with the coherent state
|α1, α2〉(n̄1 = n̄2 = 25) for various values of the
parameterλ

2

γ
: (a) λ2

γ
= 10−6, (b) λ2

γ
= 10−5, and

(c) λ
2

γ
= 10−4.

factorsS( j ) the expression

S( j )
1 =

1

4

[
2
〈
Â
†2
j Â

2
j

〉+ 〈Â4
j

〉+ 〈Â†4j 〉− (〈Â2
j

〉+ 〈Â†2j 〉)2] (58)

S( j )
2 =

1

4

[
2
〈
Â
†2
j Â

2
j

〉− 〈Â4
j

〉− 〈Â†4j 〉+ (〈Â2
j

〉− 〈Â†2j 〉)2]. (59)

Now, we can obtain the amplitude-squared squeezing of the first or the second
mode from the last expression if we takej = 1 or 2. The field density operator
ρ̂F (t) is obtained from ˆρ(t) by tracing over the atomic states,

ρ̂F (t) = TrAρ̂(t). (60)
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Fig. 6. Same as Fig. 5 but with the detuning param-
eter 12λ = 10.

From the field density operator, the expectation values in the general form for the

field operatorsÂ
†r1
1 Â

s1

1 Â
†r2
2 Â

s2

2 is calculated from the formula〈
Â
†r1
1 Â

s1

1 Â
†r2
2 Â

s2

2

〉 = Trfield
[
ρ̂F (t)Â

†r1
1 Â

s1

1 Â
†r2
2 Â

s2

2

]
. (61)

The final result is〈
Â
†r1
1 Â

s1

1 Â
†r2
2 Â

s2

2

〉
= 1

4

∞∑
n1,n2=0

[
cos2

θ

2
Qn1+s1 Qn2+s2 Q∗n1+r1

Q∗n2+r2

{
[ J(1+ Ds)(1+ Dr )

+ J1 · L1] exp(iλta−(n1, n2)) exp

(
− t

2γ
b+(n1, n2)

)
+ [ J(1+ Ds)(1− Dr )− J1 · L1] exp(−iλta+(n1, n2))
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× exp

(
− t

2γ
c−(n1, n2)

)
+ [ J(1− Ds)(1+ Dr )− J1 · L1]

× exp(iλta+(n1, n2)) exp

(
− t

2γ
c+(n1, n2)

)
+ [ J(1− Ds)(1− Dr )

+ J1 · L1] exp(−iλta−(n1, n2)) exp

(
− t

2γ
b−(n1, n2)

)}
+ sin2 θ

2
Qn1+s1+k1 Qn2+s2+k2 Q∗n1+r1+k1

Q∗n2+r2+k2

{
[ J1(1− Ds)(1− Dr )

+ J · L1] exp(iλta−(n1, n2)) exp

(
− t

2γ
b+(n1, n2)

)
+ [ J1(1− Ds)(1+ Dr )− J · L1] exp(−iλta+(n1, n2))

× exp

(
− t

2γ
c−(n1, n2)

)
+ [ J1(1+ Ds)(1− Dr )− J · L1]

× exp(iλta+(n1, n2)) exp

(
− t

2γ
c+(n1, n2)

)
+ [ J1(1+ Ds)(1+ Dr )

+ J · L1] exp(−iλta−(n1, n2)) exp

(
− t

2γ
b−(n1, n2)

)}
+ cos

θ

2
sin

θ

2
e−iφQn1+s1+k1 Qn2+s2+k2 Q∗n1+r1

Q∗n2+r2

×
{

[ J · Ls(1+ Dr )+ J1 · Lr (1− Ds)] exp(iλta−(n1, n2))

× exp

(
− t

2γ
b+(n1, n2)

)
+ [ J · Ls(1− Dr )− J1 · Lr (1− Ds)]

× exp(−iλta+(n1, n2)) exp

(
− t

2γ
c−(n1, n2)

)
+ [−J · Ls(1+ Dr )+ J1 · Lr (1+ Ds)] exp(iλta+(n1, n2))

× exp

(
− t

2γ
c+(n1, n2)

)
+ [−J · Ls(1− Dr )− J1 · Lr (1+ Ds)]

× exp(−iλta−(n1, n2)) exp

(
− t

2γ
b−(n1, n2)

)}
+ cos

θ

2
sin

θ

2
eiφQn1+s1 Qn2+s2 Q∗n1+r1+k1

Q∗n2+r2+k2
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Fig. 7. Time evolution for the amplitude-squared
squeezing parameterS(1)

1 of Eq. (58) forθ = 0 (the
particle initially in the excited state) with the initial
mean numbers̄n1 = n̄2 = 10, and the detuning pa-
rameter12λ = 0 (broken curve) and 5 (full curve) for
various values of the parameterλ

2

γ
: (a) λ

2

γ
= 10−6,

(b) λ
2

γ
= 10−2, and (c)λ

2

γ
= 10−1.

×
{

[ J · Lr (1+ Ds)+ J1 · Ls(1− Dr )] exp(iλta−(n1, n2))

× exp

(
− t

2y
b+(n1, n2)

)
+ [−J · Lr (1+ Ds)+ J1 · Ls(1+ Dr )]

× exp(−iλta+(n1, n2)) exp

(
− t

2γ
c−(n1, n2)

)
+ [ J · Lr (1− Ds)− J1 · Ls(1− Dr )] exp(iλta+(n1, n2))
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Fig. 8. Same as Fig. 7 but withθ = π (the particle
initially in the ground state).

× exp

(
− t

2γ
c+(n1, n2)

)
+ [−J · Lr (1− Ds)− J1 · Ls(1+ Dr )]

× exp(−iλ ta−(n1, n2)) exp

(
− t

2γ
b−(n1, n2)

)}]
(62)

where

J =
√

(n1+ s1)!(n2+ s2)!

(n1)!(n2)!

(n1+ r1)!(n2+ r2)!

(n2)!(n2)!
;

J1 is J with n1→ n1+ k1, n2→ n2+ k2 (63)

Ls = ν(n1+ s1+ k1, n2+ s2+ k2)

µ(n1+ s1+ k1, n2+ s2+ k2)
, L1 = Ls × Lr
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Fig. 9. Time evolution for the amplitude-squared
squeezing parameterS(1)

1 of Eq. (58) for θ = π
4

and the relative phaseφ = 0 with the initial mean
numbers̄n1 = n̄2 = 10 and the detuning parameter
1
2λ = 0 (broken curve) and 5 (full curve) for var-
ious values of the parameterλ

2

γ
: (a) λ2

γ
= 10−6,

(b) λ
2

γ
= 10−2, and (c)λ

2

γ
= 10−1.

and

Ds =
(
1
2λ

)
µ(n1+ s1+ k1, n2+ s2+ k2)

(64)

with

a±(n1, n2) = µ(n1+ r1+ k1, n2+ r2+ k2)

± µ(n1+ s1+ k1, n2+ s2+ k2) (65)

b±(n1, n2) = {(ω1(r1− s1)+ ω2(r2− s2)± λa−(n1, n2))}2 (66)

c±(n1, n2) = {(ω1(r1− s1)+ ω2(r2− s2)± λa+(n1, n2))}2. (67)
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Fig. 10. Same as Fig. 9 but with the relative phase
φ = π

2 .

Now we proceed to investigate the effect of the intrinsic decoherence on the
amplitude-squared squeezing by using Eqs. (62–67), and specifying the exponents
r , s we get the expression for the amplitude-squared squeezing of the first mode
for two-quanta (k1 = k2 = 1).

Numerical results for Eq. (58) are presented in Figs. 7–12. Here we plot-
ted amplitude-squared squeezingS(1)

1 [Eq. (58)] againstλt for n̄1 = n̄2 = 10 and
different values of the decoherence parameterλ2

γ
(namely 10−6, 10−2, 10−1) and

different values ofθ (namely 0,π4 , π2 , andπ ), and also the relative phaseφ (namely
0 andπ2 ) either in the resonant or in the off-resonant cases.

In Figs. 7 and 8 we display amplitude-squared squeezing [Eq. (58)] with
1
2λ = 0 (broken curve) and12λ = 5 (full curve), with different values of the deco-
herence parameterλ

2

γ
(namely 10−6, 10−2, 10−1) for θ = 0 (the particle initially in

excited state) andθ = π (the particle initially in ground state), respectively. The
first caseθ = 0 (the particle initially in the excited state) coincides with that of
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Fig. 11. Time evolution for the amplitude-squared
squeezing parameterS(1)

1 of Eq. (58) for θ = π
2

and the relative phaseφ = 0 with the initial mean
numbers̄n1 = n̄2 = 10 and the detuning parameter
1
2λ = 0 (broken curve) and 5 (full curve) for var-
ious values of the parameterλ

2

γ
: (a) λ2

γ
= 10−6,

(b) λ
2

γ
= 10−2, and (c)λ

2

γ
= 10−1.

Obadaet al.(1999). Also it is apparent from the calculations that for these special
cases, phase does not affect squeezing.

In Figs. 9 and 10 we display the results with angleθ = π
4 and for the values

of relative phase (namely 0 andπ2 ), respectively with12λ = 0 (broken curve) and
1
2γ = 5 (full curve) for different values of the decoherence parameterλ2

γ
(namely

10−6, 10−2, 10−1).
From Figs. 9 and 10 it is clear that in the absence of the phaseφ = 0 the

squeezing does not appear in the off-resonant case1
2λ = 5 (full curve) (see Fig. 9),

and in the resonant case12λ = 0 (broken curve) it appears just whenλ
2

γ
= 10−6

(see Fig. 9 (a)), while in presence of the phase the squeezing appears in two cases
1
2λ = 0 and 1

2λ = 5 (see Fig. 10).
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Fig. 12. Same as Fig. 11 but with the relative phase
φ = π

2 .

Figures 11 and 12 are same as figures 9 and 10, butθ = π
2 . We see from these

figures no squeezing occurs in two cases—resonant and off-resonant—forφ = 0
(see Fig. 11), and whenφ = π

2 it occurs (see Fig. 12), but the squeezing in these
cases (Fig. 12) is less than those in Fig. 10.

In view of these Figs. 7–12, we observe that the amount of squeezing rapidly
decrease with the decrease of the decoherence parameterγ . Thus we conclude that
the effect of the intrinsic decoherence on the squeezing of the field is to suppress
the squeezing of the field in the nondegenerate multiquanta JCM.

4. CONCLUDING REMARKS

In this paper, we have considered an effective Hamiltonian (6) describing the
interaction between a two-level particle (atom or trapped ion) and a two-mode field
through multiquanta. The appearance of this Hamiltonian in trapped ion experi-
ments in the Lamb-Dicke regime and with suitable side-band detunings has been
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mentioned. We have found the exact solution of the Milburn equation [Eq. (5)]
for the nondegenerate multiquanta JCM. Using the exact solution [Eq. (51)], we
have discussed the effect of the intrinsic decoherence on population inversion
and squeezing of the radiation field. It is shown that the intrinsic decoherence
in the particle-field interaction suppress the nonclassical effects, where with the
decrease of the parameterγ , i.e. with a more rapid decohering, we observed a
rapid decrease of the amount of squeezing. The detuned model is more suscep-
tible to decoherence. It is also to be remarked that the phenomena depending on
the number operators (such as mean values of number of quanta and population
inversion) show more rapid decoherence than those depending uponA, A† or their
powers.
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